3.923 \(\int x \sqrt{a+b x^2+c x^4} \, dx\)

Optimal. Leaf size=83 \[ \frac{\left (b+2 c x^2\right ) \sqrt{a+b x^2+c x^4}}{8 c}-\frac{\left (b^2-4 a c\right ) \tanh ^{-1}\left (\frac{b+2 c x^2}{2 \sqrt{c} \sqrt{a+b x^2+c x^4}}\right )}{16 c^{3/2}} \]

[Out]

((b + 2*c*x^2)*Sqrt[a + b*x^2 + c*x^4])/(8*c) - ((b^2 - 4*a*c)*ArcTanh[(b + 2*c*x^2)/(2*Sqrt[c]*Sqrt[a + b*x^2
 + c*x^4])])/(16*c^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0546726, antiderivative size = 83, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.222, Rules used = {1107, 612, 621, 206} \[ \frac{\left (b+2 c x^2\right ) \sqrt{a+b x^2+c x^4}}{8 c}-\frac{\left (b^2-4 a c\right ) \tanh ^{-1}\left (\frac{b+2 c x^2}{2 \sqrt{c} \sqrt{a+b x^2+c x^4}}\right )}{16 c^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[x*Sqrt[a + b*x^2 + c*x^4],x]

[Out]

((b + 2*c*x^2)*Sqrt[a + b*x^2 + c*x^4])/(8*c) - ((b^2 - 4*a*c)*ArcTanh[(b + 2*c*x^2)/(2*Sqrt[c]*Sqrt[a + b*x^2
 + c*x^4])])/(16*c^(3/2))

Rule 1107

Int[(x_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[(a + b*x + c*x^2)^p, x],
 x, x^2], x] /; FreeQ[{a, b, c, p}, x]

Rule 612

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((b + 2*c*x)*(a + b*x + c*x^2)^p)/(2*c*(2*p +
1)), x] - Dist[(p*(b^2 - 4*a*c))/(2*c*(2*p + 1)), Int[(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x]
 && NeQ[b^2 - 4*a*c, 0] && GtQ[p, 0] && IntegerQ[4*p]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int x \sqrt{a+b x^2+c x^4} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \sqrt{a+b x+c x^2} \, dx,x,x^2\right )\\ &=\frac{\left (b+2 c x^2\right ) \sqrt{a+b x^2+c x^4}}{8 c}-\frac{\left (b^2-4 a c\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x+c x^2}} \, dx,x,x^2\right )}{16 c}\\ &=\frac{\left (b+2 c x^2\right ) \sqrt{a+b x^2+c x^4}}{8 c}-\frac{\left (b^2-4 a c\right ) \operatorname{Subst}\left (\int \frac{1}{4 c-x^2} \, dx,x,\frac{b+2 c x^2}{\sqrt{a+b x^2+c x^4}}\right )}{8 c}\\ &=\frac{\left (b+2 c x^2\right ) \sqrt{a+b x^2+c x^4}}{8 c}-\frac{\left (b^2-4 a c\right ) \tanh ^{-1}\left (\frac{b+2 c x^2}{2 \sqrt{c} \sqrt{a+b x^2+c x^4}}\right )}{16 c^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.0228379, size = 83, normalized size = 1. \[ \frac{\left (b+2 c x^2\right ) \sqrt{a+b x^2+c x^4}}{8 c}-\frac{\left (b^2-4 a c\right ) \tanh ^{-1}\left (\frac{b+2 c x^2}{2 \sqrt{c} \sqrt{a+b x^2+c x^4}}\right )}{16 c^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[x*Sqrt[a + b*x^2 + c*x^4],x]

[Out]

((b + 2*c*x^2)*Sqrt[a + b*x^2 + c*x^4])/(8*c) - ((b^2 - 4*a*c)*ArcTanh[(b + 2*c*x^2)/(2*Sqrt[c]*Sqrt[a + b*x^2
 + c*x^4])])/(16*c^(3/2))

________________________________________________________________________________________

Maple [A]  time = 0.155, size = 101, normalized size = 1.2 \begin{align*}{\frac{2\,c{x}^{2}+b}{8\,c}\sqrt{c{x}^{4}+b{x}^{2}+a}}+{\frac{a}{4}\ln \left ({ \left ({\frac{b}{2}}+c{x}^{2} \right ){\frac{1}{\sqrt{c}}}}+\sqrt{c{x}^{4}+b{x}^{2}+a} \right ){\frac{1}{\sqrt{c}}}}-{\frac{{b}^{2}}{16}\ln \left ({ \left ({\frac{b}{2}}+c{x}^{2} \right ){\frac{1}{\sqrt{c}}}}+\sqrt{c{x}^{4}+b{x}^{2}+a} \right ){c}^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(c*x^4+b*x^2+a)^(1/2),x)

[Out]

1/8*(2*c*x^2+b)*(c*x^4+b*x^2+a)^(1/2)/c+1/4/c^(1/2)*ln((1/2*b+c*x^2)/c^(1/2)+(c*x^4+b*x^2+a)^(1/2))*a-1/16/c^(
3/2)*ln((1/2*b+c*x^2)/c^(1/2)+(c*x^4+b*x^2+a)^(1/2))*b^2

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c*x^4+b*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.59443, size = 463, normalized size = 5.58 \begin{align*} \left [-\frac{{\left (b^{2} - 4 \, a c\right )} \sqrt{c} \log \left (-8 \, c^{2} x^{4} - 8 \, b c x^{2} - b^{2} - 4 \, \sqrt{c x^{4} + b x^{2} + a}{\left (2 \, c x^{2} + b\right )} \sqrt{c} - 4 \, a c\right ) - 4 \, \sqrt{c x^{4} + b x^{2} + a}{\left (2 \, c^{2} x^{2} + b c\right )}}{32 \, c^{2}}, \frac{{\left (b^{2} - 4 \, a c\right )} \sqrt{-c} \arctan \left (\frac{\sqrt{c x^{4} + b x^{2} + a}{\left (2 \, c x^{2} + b\right )} \sqrt{-c}}{2 \,{\left (c^{2} x^{4} + b c x^{2} + a c\right )}}\right ) + 2 \, \sqrt{c x^{4} + b x^{2} + a}{\left (2 \, c^{2} x^{2} + b c\right )}}{16 \, c^{2}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c*x^4+b*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

[-1/32*((b^2 - 4*a*c)*sqrt(c)*log(-8*c^2*x^4 - 8*b*c*x^2 - b^2 - 4*sqrt(c*x^4 + b*x^2 + a)*(2*c*x^2 + b)*sqrt(
c) - 4*a*c) - 4*sqrt(c*x^4 + b*x^2 + a)*(2*c^2*x^2 + b*c))/c^2, 1/16*((b^2 - 4*a*c)*sqrt(-c)*arctan(1/2*sqrt(c
*x^4 + b*x^2 + a)*(2*c*x^2 + b)*sqrt(-c)/(c^2*x^4 + b*c*x^2 + a*c)) + 2*sqrt(c*x^4 + b*x^2 + a)*(2*c^2*x^2 + b
*c))/c^2]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x \sqrt{a + b x^{2} + c x^{4}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c*x**4+b*x**2+a)**(1/2),x)

[Out]

Integral(x*sqrt(a + b*x**2 + c*x**4), x)

________________________________________________________________________________________

Giac [A]  time = 1.33372, size = 103, normalized size = 1.24 \begin{align*} \frac{1}{8} \, \sqrt{c x^{4} + b x^{2} + a}{\left (2 \, x^{2} + \frac{b}{c}\right )} + \frac{{\left (b^{2} - 4 \, a c\right )} \log \left ({\left | -2 \,{\left (\sqrt{c} x^{2} - \sqrt{c x^{4} + b x^{2} + a}\right )} \sqrt{c} - b \right |}\right )}{16 \, c^{\frac{3}{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c*x^4+b*x^2+a)^(1/2),x, algorithm="giac")

[Out]

1/8*sqrt(c*x^4 + b*x^2 + a)*(2*x^2 + b/c) + 1/16*(b^2 - 4*a*c)*log(abs(-2*(sqrt(c)*x^2 - sqrt(c*x^4 + b*x^2 +
a))*sqrt(c) - b))/c^(3/2)